NECESSARY CONDITIONS FOR THE CONVERGENCE OF CARDINAL HERMITE SPLINES AS THEIR DEGREE TENDS TO INFINITY

BY

T. N. T. GOODMAN

ABSTRACT. Let $\mathbb{S}_{n,s}$ denote the class of cardinal Hermite splines of degree n having knots of multiplicity s at the integers. In this paper we show that if $f_n \to f$ uniformly on \mathbb{R} , where $f_n \in \mathbb{S}_{i_n,s}$, $i_n \to \infty$ as $n \to \infty$, and f is bounded, then f is the restriction to \mathbb{R} of an entire function of exponential type < s. In proving this result, we need to derive some extremal properties of certain splines $\mathbb{S}_{n,s} \in \mathbb{S}_{n,s}$, in particular that $\|\mathbb{S}_{n,s}\|_{\infty}$ minimises $\|S\|_{\infty}$ over $S \in \mathbb{S}_{n,s}$ with $\|S^{(n)}\|_{\infty} = \|S^{(n)}\|_{\infty}$.

1. Introduction. For $n = 1, 2, \ldots$ and $1 \le s \le n$, let

$$\mathcal{F}_{n,s} = \{ f \in C^{n-s}(\mathbb{R}) : f | (\nu, \nu + 1) \in C^{n-1}[(\nu, \nu + 1)] \text{ and }$$

 $f^{(n-1)}$ absolutely continuous on $(\nu, \nu + 1), \forall \nu \in \mathbb{Z}$.

We let $S_{n,s}$ denote the set of all cardinal spline functions of degree n in $\mathcal{F}_{n,s}$, i.e.,

$$S_{n,s} = \{ S \in C^{n-s}(\mathbf{R}) : S | (\nu, \nu + 1) \in \pi_n, \forall \nu \in \mathbf{Z} \},$$

where π_n denotes the set of all polynomials of degree at most n.

Throughout this paper, ||f|| will denote ess $\sup_{x \in \mathbb{R}} |f(x)|$.

In [6] Lipow and Schoenberg have shown that for odd n, $1 < s < \frac{1}{2}(n+1)$, and any function f with $f^{(r)}$ of power growth on \mathbb{R} , $v = 0, 1, \ldots, s - 1$, there is a unique $S_{n,s} \in \mathbb{S}_{n,s}$ of power growth such that $S_{n,s}^{(r)}$ interpolates $f^{(r)}$ at the integers. In [8] Marsden and Riemenschneider have shown that if f is the Fourier-Stieltjes transform of a measure on $(-s\pi, s\pi)$, then $S_{n,s}^{(r)} \to f^{(r)}$ uniformly on \mathbb{R} as $n \to \infty$, $v = 0, 1, \ldots, s - 1$. The case s = 1 had previously been proved by Schoenberg [10] who established in [11] the partial converse that if f is bounded on \mathbb{R} and $S_{n,1} \to f$ uniformly on \mathbb{R} as $n \to \infty$, then f is the restriction to \mathbb{R} of an entire function of exponential type $< \pi$.

In §4 of this paper we generalise Schoenberg's result by showing, in particular, that for any $s = 1, 2, \ldots$, if f is bounded on \mathbf{R} and $S_{n,s} \to f$ uniformly on \mathbf{R} as $n \to \infty$, then f is the restriction to \mathbf{R} of an entire function

Received by the editors August 18, 1978.

AMS (MOS) subject classifications (1970). Primary 41A15; Secondary 41A05.

Key words and phrases. Cardinal spline interpolation, cardinal Hermite splines, Euler splines, Chebyshev polynomials.

of exponential type $\leqslant s\pi$. To establish this result we need some extremal properties of certain splines $\mathcal{E}_{n,s} \in \mathcal{S}_{n,s}$ which may be regarded as generalisations of the Euler splines employed in [11]. For odd s these were defined by Cavaretta in [1]. In §2 we define $\mathcal{E}_{n,s}$ for even s and show that for all s, $f \in \mathcal{F}_{n,s}$, $||f|| \leqslant 1 = ||\mathcal{E}_{n,s}||$ and $||f^{(n)}||| \leqslant ||\mathcal{E}_{n,s}^{(n)}||$ implies

$$|f^{(k)}(\nu+)| < |\mathcal{E}_{n,s}^{(k)}(\nu+)|, \quad \forall \nu \in \mathbb{Z} \text{ and } k = n-s, \ldots, n-1.$$

In [1] Cavaretta shows that for odd s, $S = \mathcal{E}_{n,s}$ minimises ||S|| over all $S \in \mathcal{S}_{n,s}$ with

$$S^{(n)}|(\nu, \nu + 1) = (-1)^{\nu} \|\mathcal{E}_{n,s}^{(n)}\|, \quad \forall \nu \in \mathbb{Z}.$$

In §3 we show that for all s, $S = \mathcal{E}_{n,s}$ actually minimises ||S|| over all $S \in \mathcal{S}_{n,s}$ with $||S^{(n)}|| = ||\mathcal{E}_{n,s}^{(n)}||$.

2. The Euler-Chebyshev splines. In [1] Cavaretta shows there are functions $\mathcal{E}_{n,s}$ in $\mathcal{S}_{n,s}$ for $n=1,2,\ldots$ and odd s < n, characterised by the following properties:

$$\mathcal{E}_{n,s}(x+1) = (-1)^s \mathcal{E}_{n,s}(x), \quad \forall x \in \mathbf{R}, \tag{2.1}$$

 $\mathcal{E}_{n,s}(x)$ equioscillates between -1 and 1 at points

$$0 \le \beta_1 < \cdots < \beta_r < 1, \tag{2.2}$$

$$\mathcal{E}_{n,s}$$
 is even or odd about $x = \frac{1}{2}$ as *n* is even or odd, (2.3)

$$\mathcal{E}_{n,s}^{(n)}(x) > 0 \text{ on } (0, 1).$$
 (2.4)

We now construct functions $\mathcal{E}_{n,s}$ in $\mathcal{E}_{n,s}$ for $n = 1,2,\ldots$ and even $s \leq n$ which are also characterised by properties (2.1)–(2.4).

We shall need the following lemma. Its proof is almost identical to that of Proposition 1 in [1] and so will be omitted.

LEMMA 1. Let
$$\{f_1(x), \ldots, f_k(x)\}$$
 be a Chebyshev system in $[a, b]$ and define $g_i(x) = (x - a)(x - b)f_i(x), i = 1, \ldots, k.$

Let F(x) be a continuous function on [a, b] which vanishes at a and b. Then there exists a unique linear combination $\sum_{i=1}^{k} a_i g_i(x)$ of best approximation in the uniform norm to F(x). This best approximation is uniquely characterised by a(k+1)-point equioscillation property, i.e. there exist k+1 points $a < x_1 < \cdots < x_{k+1} < b$ where the error function assumes the value of its norm with alternating signs.

We first consider the case of odd n. For any $p,q, 1 \le q \le p$, we define

$$V_{2p+1,2q} = \left\{ f \in \pi_{2p+1} \middle| \left[0, \frac{1}{2} \right] : f^{(2i)}(0) = 0, \quad i = 0, \dots, p-q, \right.$$
$$f^{(2j)}\left(\frac{1}{2}\right) = 0, \quad j = 0, \dots, p \right\}.$$

It follows from the theory of Jerome and Schumaker [3] and Lorentz [7]

that dim $V_{2p+1,2q}=q$ and any f in $V_{2p+1,2q}$ has at most q+1 zeros in $[0,\frac{1}{2}]$. Thus if $x(x-\frac{1}{2})f_i(x)$, $i=1,\ldots,q$, form a basis for $V_{2p+1,2q}$, then $\{f_1(x),\ldots,f_q(x)\}$ form a Chebyshev system on $[0,\frac{1}{2}]$.

Now take any odd n and even s, $4 \le s < n$, and take any f in $V_{n,s}$ with $f^{(n)} > 0$. Let F denote the best approximation to f in the uniform norm in $V_{n-2,s-2}$. Then by Lemma 1, f - F equioscillates at points $0 < \beta_1 < \cdots < \beta_{s/2} < \frac{1}{2}$. Let G = (f - F)/||f - F|| and define $\mathcal{E}_{n,s}$ in $\mathcal{E}_{n,s}$ by

$$\mathcal{E}_{n,s}(x) = \begin{cases} G(x), & 0 < x < \frac{1}{2}, \\ (-1)^n G(1-x), & \frac{1}{2} < x < 1, \end{cases}$$

$$\mathcal{E}_{n,s}(x+1) = \mathcal{E}_{n,s}(x), \quad \forall x \in \mathbb{R}. \tag{2.5}$$

For s=2, let G be the element of $V_{n,2}$ with ||G||=1 and $G^{(n)}>0$, and again define $\mathcal{E}_{n,s}$ by (2.5). Since $G(0)=G(\frac{1}{2})=0$, $\exists \ \beta_1 \in (0,\frac{1}{2})$ with $|G(\beta_1)|=1$, and so $\mathcal{E}_{n,2}$ equioscillates at β_1 and $\beta_2=1-\beta_1$. Thus for all even s, $\mathcal{E}_{n,s}$ is characterised by properties (2.1) to (2.4).

Next consider even n. For any $p,q, 0 \le q \le p$, define

$$V_{2p,2q} = \left\{ f \in \pi_{2p} | \left[0, \frac{1}{2} \right] : f^{(2i+1)}(0) = 0, \quad i = 0, \dots, p - q - 1, \right.$$
$$f^{(2j+1)}\left(\frac{1}{2}\right) = 0, \quad j = 0, \dots, p - 1 \right\}.$$

Then dim $V_{2p,2q}=q+1$ and any f in $V_{2p,2q}$ has at most q zeros in $[0,\frac{1}{2}]$. Thus any basis for $V_{2p,2q}$ forms a Chebyshev system.

Now take even n and even s, $2 \le s \le n$, and take any f in $V_{n,s}$ with $f^{(n)} > 0$. Let F denote the best approximation to f in the uniform norm in $V_{n-2,s-2}$. Then f - F equioscillates at points $0 \le \beta_1 < \cdots < \beta_{s/2+1} \le \frac{1}{2}$. Now f' - F' is in $V_{n-1,s}$ and so has at most $\frac{1}{2}s - 1$ zeros in $(0, \frac{1}{2})$. Thus $\beta_1 = 0$ and $\beta_{s/2+1} = \frac{1}{2}$. Let $G = (f - F)/\|f - F\|$ and define $\mathcal{E}_{n,s}$ in $\mathcal{E}_{n,s}$ by (2.5). Then again $\mathcal{E}_{n,s}$ is characterised by properties (2.1)–(2.4).

We note that, for $m = 1, 2, \ldots$,

$$\mathcal{E}_{2m-1,1}(x) = (-1)^m \mathcal{E}_{2m-1}(x),$$

$$\mathcal{E}_{2m,1}(x) = (-1)^m \mathcal{E}_{2m}(x - \frac{1}{2}),$$
(2.6)

where \mathcal{E}_n denotes the Euler spline of degree n, see [11].

We also note that, for $n = 1, 2, \ldots$,

$$\mathcal{E}_{n,n}(x) = T_n(2x-1), \quad \forall x \in [0,1],$$

where T_n denotes the Chebyshev polynomial of degree n.

It therefore seems appropriate to refer to $\mathcal{E}_{n,s}$ as Euler-Chebyshev splines, or ET-splines, following the similar terminology introduced by Cavaretta in [1]. They satisfy the following extremal property which is related to a theorem of Kolmogorov (see [2]).

THEOREM 1. Suppose f in $\mathfrak{F}_{n,s}$ satisfies

$$||f|| \le 1$$
 and $||f^{(n)}|| \le ||\mathcal{E}_{n,s}^{(n)}||$, (2.7)

then

$$|f^{(k)}(\nu+)| \leq |\mathcal{E}_{n,s}^{(k)}(\nu+)|, \quad \forall \nu \in \mathbb{Z}, \quad k=n-s,\ldots,n-1.$$

PROOF. We use an elementary and powerful technique introduced by Cavaretta [2].

Without loss of generality we may take $\nu = 0$. Suppose f in $\mathcal{F}_{n,s}$ satisfies (2.7) and is periodic of period an even integer K. We shall assume $|f^{(k)}(0+)| > |\mathcal{E}_{n,s}^{(k)}(0+)|$ for some k, n-s < k < n-1, and reach a contradiction. Choose λ so that $\lambda f^{(k)}(0+) = \mathcal{E}_{n,s}^{(k)}(0+)$ and let $g = \mathcal{E}_{n,s} - \lambda f$, noting that g is also periodic of period K.

Since $||\lambda f|| < ||\mathcal{E}_{n,s}||$ and because of the equioscillation of $\mathcal{E}_{n,s}$, g has at least Ks distinct zeros per period. Thus, by repeated application of Rolle's theorem, $g^{(n-s)}$ has at least Ks distinct zeros per period. If k=n-s, then $g^{(n-s)}(0)=0$ and so $g^{(n-s+1)}$ has at least K(s-1)+1 zeros per period which are not at integers. If k>n-s, then $g^{(n-s+1)}$ has at least K(s-1) zeros per period which are not at integers, and so $g^{(k)}$ has at least K(n-k) zeros per period which are not at integers. But $g^{(k)}(0+)=0$ and so $g^{(k+1)}$ has at least K(n-k-1)+1 changes of sign per period which are not at integers. Thus for all k, $g^{(n)}$ has at least one change of sign per period which is not at an integer. But this contradicts $|\lambda f^{(n)}(x)| < \mathcal{E}_{n,s}^{(n)}(x)|$ in every interval $(\nu, \nu+1)$, $\nu \in \mathbb{Z}$.

We may extend to nonperiodic f in precisely the same manner as in [2]. \Box

3. An extremal property of ET-splines. For $n = 1, 2, \ldots, 1 \le s \le n$, and numbers $\alpha_1, \ldots, \alpha_s, \lambda$, we define

$$\Pi_{n}(\alpha_{1}, \dots, \alpha_{s}; \lambda) \\
\begin{vmatrix}
1 & \cdots & 1 & (1-\lambda) & 0 & 0 & \cdots & 0 \\
\alpha_{1} & \alpha_{s} & 1 & (1-\lambda) & 0 & \cdots & 0 \\
\alpha_{1}^{2} & \cdots & \alpha_{s}^{2} & 1 & \binom{2}{1} & (1-\lambda) & \cdots & \cdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\alpha_{1}^{n-s} & \cdots & \alpha_{s}^{n-s} & 1 & \binom{n-s}{1} & \binom{n-s}{2} & \cdots & \binom{n-s}{n-s-1} & (1-\lambda) \\
\vdots & \vdots \\
\alpha_{1}^{n} & \cdots & \alpha_{s}^{n} & 1 & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-s-1} & \binom{1}{n-s}
\end{vmatrix}$$

This determinant has the following properties, which follow from the work of Micchelli [9] or by using the method of Lee and Sharma [5].

For fixed $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_s < 1$, $\Pi_n(\lambda) \equiv \Pi_n(\alpha_1, \ldots, \alpha_s; \lambda)$ is a polynomial in λ with real distinct roots of sign $(-1)^s$. If $\alpha_1 > 0$, $\Pi_n(\lambda) = a\lambda^{n-s+1} + \ldots$, where sign $a = (-1)^{(s+1)(n+s+1)}$. If $\alpha_1 = 0$, $\Pi_n(\lambda) = a\lambda^{n-s} + \ldots$, where sign $a = (-1)^{(s+1)(n+s)}$. If the nonzero α_i , $i = 1, \ldots, s$, are symmetric about $\frac{1}{2}$, then $\Pi_n(\lambda)$ is reciprocal.

Now fix $0 \le \alpha_1 < \alpha_2 < \cdots < \alpha_s < 1$ and take $r, 1 \le r \le s$. For $x \in [0, 1]$ we define

$$\Pi(x,\lambda) = \Pi_n(\alpha_1,\ldots,\alpha_{r-1},x,\alpha_{r+1},\ldots\alpha_s;\lambda)$$

= $p_0(x)\lambda^{n-s+1} + p_1(x)\lambda^{n-s} + \cdots + p_{n-s+1}(x)$.

Then it is easy to show that

$$\frac{\partial^{j}}{\partial x^{j}}\Pi(1,\lambda) = \lambda \frac{\partial^{j}}{\partial x^{j}}\Pi(0,\lambda), \qquad j = 0, \ldots, n - s, \tag{3.1}$$

and

$$\Pi(\alpha_i, \lambda) = 0, \qquad i \neq r. \tag{3.2}$$

We now define the 'B-spline'

$$B_r(x) = \begin{cases} p_{\nu}(x - \nu), & x \in [\nu, \nu + 1), \quad \nu = 0, \dots, n - s + 1, \\ 0, & x < 0 \text{ and } x > n - s + 2. \end{cases}$$

From (3.1) we see that $B_r \in S_{n,s}$ and from (3.2) we have $B_r(\alpha_i + \nu) = 0$ for all $\nu \in \mathbb{Z}$ and $i \neq r$. Also

$$\sum_{\nu=-\infty}^{\infty} B_{r}(x+\nu)t^{\nu} = t^{n-s+1}\Pi(x,t^{-1}), \qquad x \in [0,1).$$
 (3.3)

Now assume

$$\Pi_n(\alpha_1,\ldots,\alpha_s;(-1)^s)\neq 0. \tag{3.4}$$

Then following the method of Schoenberg [11], we may write

$$\left\{\sum_{\nu=-\infty}^{\infty} B_r(\nu + \alpha_r) t^{\nu}\right\}^{-1} = \sum_{\nu=-\infty}^{\infty} \omega_{\nu} t^{\nu}, \tag{3.5}$$

where the series is convergent on some annulus about |t| = 1 and $|\omega_{\nu}| = O(\beta^{\nu})$ as $\nu \to \pm \infty$ for some $0 < \beta < 1$.

We now define the 'fundamental spline'

$$L_r(x) = \sum_{\nu=-\infty}^{\infty} \omega_{\nu} B_r(x-\nu).$$

Then

$$L_r(k + \alpha_r) = \sum_{\nu = -\infty}^{\infty} \omega_{\nu} B_r(k + \alpha_r - \nu)$$
$$= \delta_{k0}, \quad \forall k \in \mathbb{Z}, \text{ by (3.5)}.$$

It follows from the theory of [9] that if $S \in S_{n,s}$ is of power growth, then

$$S(x) = \sum_{r=1}^{s} \sum_{k=-\infty}^{\infty} S(k + \alpha_r) L_r(x - k).$$
 (3.6)

Now take x in (0, 1). Then

$$\frac{\partial^n}{\partial x^n}\Pi(x,\lambda)=(-1)^{n+r+1}n!\Pi_{n-1}(\alpha_1,\ldots,\alpha_{r-1},\alpha_{r+1},\ldots,\alpha_s;\lambda).$$

So, by (3.3),

$$\sum_{\nu=-\infty}^{\infty} B_r^{(n)}(\nu+x)t^{\nu}$$

$$= (-1)^{n+r+1} n! t^{n-s+1} \Pi_{n-1}(\alpha_1, \dots, \alpha_{r-1}, \alpha_{r+1}, \dots, \alpha_s; t^{-1})$$
 (3.7)

Now

$$L_r^{(n)}(k+x) = \sum_{n=-\infty}^{\infty} \omega_{\nu} B_r^{(n)}(k+x-\nu)$$

and so

$$\sum_{k=-\infty}^{\infty} L_r^{(n)}(k+x)t^k = \left(\sum_{i=-\infty}^{\infty} \omega_i t^i\right) \left(\sum_{j=-\infty}^{\infty} B_r^{(n)}(j+x)t^j\right).$$

So by (3.7), (3.5) and (3.3),

$$\sum_{k=-\infty}^{\infty} L_r^{(n)}(k+x)t^k = \frac{(-1)^{n+r+1}n!\Pi_{n-1}(\alpha_1,\ldots,\alpha_{r-1},\alpha_{r+1},\ldots,\alpha_s;t^{-1})}{\Pi(\alpha_1,\ldots,\alpha:t^{-1})}. \quad (3.8)$$

Then from (3.8) and the properties of $\Pi_n(\lambda)$, we have the following result.

$$\sum_{k=-\infty}^{\infty} L_r^{(n)}(k+x)t^k = \frac{(-1)^{r+s}K\prod_{i=1}^{n-s+1}(1+\mu_i t)}{\prod_{j=1}^{n-s+1}(1-\lambda_j t)} \quad \text{if } \alpha_1 > 0,$$

$$= \frac{(-1)^{r+s+1}K\prod_{i=1}^{n-s}(1+\mu_i t)}{\prod_{j=1}^{n-s}(1-\lambda_j t)} \quad \text{if } \alpha_1 = 0, \quad r > 1,$$

$$= \frac{K\prod_{i=1}^{n-s+1}(1+\mu_i t)}{t\prod_{j=1}^{n-s}(1-\lambda_j t)} \quad \text{if } \alpha_1 = 0, \quad r = 1,$$

where K, μ_i , λ_j are constants (depending on r, n, α_1 , ..., α_s) with K > 0 and sign $\mu_i = \text{sign } \lambda_j = (-1)^s$, $\forall i,j$.

We therefore have (see [4, p. 395]),

$$\operatorname{sign} L_r^{(n)}(k+x) = \begin{cases} (-1)^{q+r+k} & s \text{ odd,} \\ (-1)^{q+r+1}, & s \text{ even,} \end{cases}$$

where

$$q = \begin{cases} 1, & \text{if } \alpha_1 > 0, \\ 0, & \text{if } \alpha_1 = 0. \end{cases}$$
 (3.9)

We are now in a position to prove our result.

THEOREM 2. If $S \in \mathbb{S}_{n,s}$ satisfies ||S|| < 1, then $||S^{(n)}|| < ||\mathbb{S}_{n,s}^{(n)}||$.

PROOF. Take β_1, \ldots, β_s as in (2.2). By (2.3) we know the nonzero β_i , $i = 1, \ldots, s$, are symmetric about $\frac{1}{2}$ and so $\Pi_n(\beta_1, \ldots, \beta_s; \lambda)$ is a reciprocal polynomial in λ . If n and s are both even or both odd, then $\beta_1 = 0$. Otherwise $\beta_1 > 0$. Thus in all cases, $\Pi_n(\beta_1, \ldots, \beta_s; \lambda)$ is a polynomial in λ of even degree and so

$$\Pi_n(\beta_1,\ldots,\beta_s;(-1)^s)\neq 0.$$

Since (3.4) is satisfied, we may define the 'fundamental spline' L_r for $r = 1, \ldots, s$. Then for any $S \in \mathbb{S}_{n,s}$ satisfying ||S|| < 1, we have from (3.6),

$$|S^{(n)}(x)| = \left| \sum_{r=1}^{s} \sum_{k=-\infty}^{\infty} S(k+\beta_r) L_r^{(n)}(x-k) \right|$$

$$< \sum_{r=1}^{s} \sum_{k=-\infty}^{\infty} |L_r^{(n)}(x-k)|, \quad \forall \ x \in \mathbb{R}.$$
 (3.10)

But it follows from (3.9) and (2.2) that equality is attained in (3.10) for $S = \mathcal{E}_{n,s}$. \square

For s = 1 this result was proved by Schoenberg [11], and for s = n the result follows immediately from the properties of Chebyshev polynomials.

It is clear from the proof of Theorem 2 that the condition $||S|| \le 1$ in the statement of the theorem can be replaced by the weaker condition

$$|S(k+\beta_i)| < 1, \quad \forall k \in \mathbb{Z}, i = 1, \ldots, s.$$

4. Limits of cardinal splines. We need a further property of ET-splines.

LEMMA 2. For $s = 1, 2, \ldots$, there are constants K_s such that $\|\mathcal{E}_{n,s}^{(\nu)}\| < K_c(s\pi)^n$ for all n > s and $\nu = 0, \ldots, n$.

PROOF. First suppose s is odd, s = 2t - 1. It follows from the work of [1] that for any n > s,

$$\mathcal{E}_{n,s} = \mathcal{E}_{n,1} + \mu_1 \mathcal{E}_{n-2,1} + \cdots + \mu_{t-1} \mathcal{E}_{n-2t+2,1}, \tag{4.1}$$

where μ_1, \ldots, μ_{t-1} are chosen to minimise $\|\mathcal{E}_{n,s}\|$.

We first consider odd n > s. Then it follows from (4.1) and (2.6) that we may write

$$\mathcal{E}_{n,s} = (-1)^{(n+1)/2} \phi_n / \|\phi_n\|,$$

where

$$\phi_n(x) = \sum_{r=1}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n+1}} + \lambda_1^{(n)} \sum_{r=1}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n-1}} + \cdots + \lambda_{r-1}^{(n)} \sum_{r=1}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n-2t+3}} = \sum_{r=1}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n+1}} \left\{ 1 + \lambda_1^{(n)} (2r-1)^2 + \cdots + \lambda_{r-1}^{(n)} (2r-1)^{2t-2} \right\},$$

and $\lambda_1^{(n)}, \ldots, \lambda_{t-1}^{(n)}$ are chosen to minimise $\|\phi_n\|$.

Let $\lambda_1, \ldots, \lambda_{r-1}$ be the unique solution of the equations

$$1 + (2r-1)^2 \lambda_1 + \cdots + (2r-1)^{2t-2} \lambda_{t-1} = 0, \qquad r = 1, \ldots, t-1.$$

Let

$$\psi_n(x) = \sum_{r=t}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n+1}} \left\{ 1 + \lambda_1 (2r-1)^2 + \cdots + \lambda_{t-1} (2r-1)^{2t-2} \right\}.$$

Then $\|(2t-3)^{n+1}\psi_n\| \to 0$ as $n \to \infty$. Since $\|\phi_n\| \le \|\psi_n\|$, $\|(2t-3)^{n+1}\phi_n\| \to 0$ as $n \to \infty$ and so for $r = 1, \ldots, t-1$,

$$\left(\frac{2t-3}{2r-1}\right)^{n+1}\left\{1+\lambda_1^{(n)}(2r-1)^2+\cdots+\lambda_{t-1}^{(n)}(2r-1)^{2t-2}\right\}\to 0\quad \text{as } n\to\infty.$$

So $\lambda_i^{(n)} \to \lambda_i$ as $n \to \infty$, $i = 1, \ldots, t - 1$. Thus

$$(2t-1)^{n+1}\phi_n(x) = f_n(x) + a_n \cos(2t-1)\pi x + O\left(\left[\frac{2t-1}{2t+1}\right]^n\right)$$

where $f_n(x)$ is of the form $\sum_{r=1}^{t-1} b_r \cos(2r-1)\pi x$ and

$$a_n \to a = 1 + (2t - 1)^2 \lambda_1 + \cdots + (2t - 1)^{2t - 2} \lambda_{t-1} \neq 0$$
 as $n \to \infty$.

Now for each n, there is an integer j, 1 < j < 2t - 1, such that

$$f_n\Big(\frac{j}{2t-1}\Big)a_n\cos j\pi>0,$$

and so

$$(2t-1)^{n+1} \left| \phi_n \left(\frac{j}{2t-1} \right) \right| > |a_n| + O\left(\left[\frac{2t-1}{2t+1} \right]^n \right).$$

So $\exists \delta > 0$ such that

$$s^{n+1}\|\phi_n\| > \delta, \qquad \forall \ n > s. \tag{4.2}$$

Writing

$$g_n(x) = \sum_{r=1}^{\infty} \frac{\cos(2r-1)\pi x}{(2r-1)^{n+1}},$$

we have

$$||g_n^{(\nu)}|| < \pi^{\nu} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right) < 2\pi^{\nu}$$

for $n = 1, 2, \ldots$ and $\nu < n$. Also $||g_n^{(n)}|| = 2||g_n^{(n-1)}|| < 4\pi^{n-1}$. So

$$\|\phi_n^{(\nu)}\| < 4\pi^{n-1}\{1+|\lambda_1^{(n)}|+\cdots+|\lambda_{t-1}^{(n)}|\}, \quad \nu \leq n,$$

and so there is a constant K such that

$$\|\phi_n^{(\nu)}\| < K\pi^n \quad \text{for all } n > s \text{ and } \nu < n. \tag{4.3}$$

Thus

$$\|\mathcal{E}_{n,s}^{(r)}\| = \|\phi_n^{(r)}\|/\|\phi_n\| < \frac{Ks}{\delta}(s\pi)^n, \quad \forall n > s, \quad \nu < n,$$

by (4.2) and (4.3).

The result for even n follows similarly.

Next suppose s is even, s = 2t. We first note that

$$\mathcal{E}_{n,2}^{(n-1)}(x)/\|\mathcal{E}_{n,2}^{(n)}\| = x - \frac{1}{2}, \quad \forall x \in (0, 1).$$

So

$$\mathcal{E}_{n,2} = (-1)^{[n/2]} h / ||h||,$$

where

$$h(x) = \begin{cases} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n} \cos 2k\pi \left(x - \frac{1}{2}\right) + \sum_{k=1}^{\infty} \frac{1}{(2k)^n} & \text{if } n \text{ even,} \\ \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n} \sin 2k\pi \left(x - \frac{1}{2}\right) & \text{if } n \text{ odd.} \end{cases}$$

It follows that for even n,

$$\mathcal{E}_{n,*} = (-1)^{n/2} \phi_n / \|\phi_n\|,$$

where

$$\phi_n(x) = \mu + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n} \cos 2k\pi \left(x - \frac{1}{2}\right) + \lambda_1^{(n)} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n-2}} \cos 2k\pi \left(x - \frac{1}{2}\right) + \dots + \lambda_{t-1}^{(n)} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n-2t+2}} \cos 2k\pi \left(x - \frac{1}{2}\right),$$

and μ , $\lambda_1^{(n)}$, ..., $\lambda_{r-1}^{(n)}$ are chosen to minimise $\|\phi_n\|$. For odd n,

$$\mathcal{S}_{n,s} = (-1)^{(n-1)/2} \phi_n / \|\phi_n\|,$$

where

$$\phi_n(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n} \sin 2k\pi \left(x - \frac{1}{2}\right) + \lambda_1^{(n)} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n} \sin 2k\pi \left(x - \frac{1}{2}\right) + \dots + \lambda_{l-1}^{(n)} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n-2l+2}} \sin 2k\pi \left(x - \frac{1}{2}\right),$$

and $\lambda_1^{(n)}, \ldots, \lambda_{t-1}^{(n)}$ are chosen to minimise $\|\phi_n\|$.

The result now follows by the same method as for odd s. \square

We now apply Lemma 2 and Theorems 1 and 2 in proving the following:

LEMMA 3. For $s = 1, 2, \ldots$, there are constants L_s such that if S in $S_{n,s}$ satisfies $||S|| \le 1$, then $||S^{(k)}|| \le L_s(s\pi)^k$, for all n > s and $k \le n - s$.

PROOF. Take S in $S_{n,s}$ with $||S|| \le 1$. Then by Theorem 2, $||S^{(n)}|| \le ||S^{(n)}||$. So by Theorem 1,

$$|S^{(k)}(\nu+)| \le |\mathfrak{S}_{n,s}^{(k)}(\nu+)|, \quad \forall \nu \in \mathbb{Z}, \quad k=n-s+1, \ldots, n-1.$$
 So by Lemma 2,

$$||S^{(n)}|| < K_{s}(s\pi)^{n} \tag{4.4}$$

and

$$|S^{(k)}(\nu+)| < K_s(s\pi)^n, \quad \forall \nu \in \mathbb{Z}, \quad k = n-s+1, \ldots, n-1.$$
 (4.5)

It follows from (4.4) and (4.5) for k = n - 1 that $||S^{(n-1)}|| < 2K_s(s\pi)^n$. Proceeding in this manner we deduce that

$$||S^{(n-s+1)}|| < sK_s(s\pi)^n.$$
 (4.6)

Let T(x) = S(Mx), where $M = [\frac{1}{2}K_s s^{n+1}\pi^s]^{-1/(n-s+1)}$. Then

$$|T^{(n-s+1)}(x)| = M^{n-s+1} |S^{(n-s+1)}(x)|$$

$$< \left[\frac{1}{2} K_s s^{n+1} \pi^s \right]^{-1} s K_s (s\pi)^n \qquad \text{(by (4.6))}$$

$$= 2\pi^{n-s} < \|\mathcal{E}_{n-s+1}^{(n-s+1)}\|.$$

So by a theorem of Kolmogorov (see [2]), for $k \le n - s$,

$$||T^{(k)}|| \le ||\mathcal{E}_{n-s+1}^{(k)}|| < 2\pi^k \quad \text{(see [11])}.$$

So

$$||S^{(k)}|| = M^{-k}||T^{(k)}|| < M^{-k}2\pi^{k}$$
 (by (4.7))
= $2\left[\frac{1}{2}K_{s}(s\pi)^{s}\right]^{k/(n-s+1)}(s\pi)^{k} < L_{s}(s\pi)^{k},$

where $L_s = \max\{2, K_s(s\pi)^s\}$. \square

By the method of Schoenberg [11], we may deduce from Lemma 3 our final result.

THEOREM 3. For a given natural number s, suppose $f_n \in \mathbb{S}_{i_n,s}$, where $i_n \to \infty$ as $n \to \infty$. If $f_n \to f$ uniformly on \mathbb{R} and f is bounded, then f is the restriction to \mathbb{R} of an entire function of exponential type $\leq s$.

ACKNOWLEDGEMENT. The author wishes to thank S. L. Lee for drawing his attention to the problems considered here and for many helpful discussions.

REFERENCES

- 1. A. S. Cavaretta, Jr., On cardinal perfect splines of least sup-norm on the real axis, J. Approximation Theory 8 (1973), 285-303.
- 2. ____, An elementary proof of Kolmogorov's theorem, Amer. Math. Monthly 82 (1974), 480-486.
- 3. J. W. Jerome and L. L. Schumaker, On Lg-splines, J. Approximation Theory 2 (1969), 29-49.
 - 4. S. Karlin, Total positivity, vol. 1, Stanford Univ. Press, Stanford, California, 1968.
- 5. S. L. Lee and A. Sharma, Cardinal lacunary interpolation by g-splines. I, The characteristic polynomials, J. Approximation Theory 16 (1976), 85-96.
- 6. P. R. Lipow and I. J. Schoenberg, Cardinal interpolation and spline functions. III, Cardinal Hermite interpolation, Linear Algebra and Appl. 6 (1973), 273-304.
 - 7. G. G. Lorentz, Zeros of splines and Birkhoff's kernel, Math. Z. 142 (1975), 173-180.
- 8. M. J. Marsden and S. D. Riemenschneider, Cardinal Hermite spline interpolation. Convergence as the degree tends to infinity, Trans. Amer. Math. Soc. 235 (1973), 221-244.
- 9. C. A. Micchelli, Oscillation matrices and cardinal spline interpolation, Splines and Approximation Theory, Academic Press, New York, 1976.
- 10. I. J. Schoenberg, Notes on spline functions. III, On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93.
- 11. _____, Notes on spline functions. IV, A cardinal spline analogue of the theorem of the brothers Markov, Israel J. Math. 16 (1973), 94-102.

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF SCIENCE OF MALAYSIA, PENANG, MALAYSIA

Current address: Department of Mathematics, The University, Dundee DDI 4HN, Scotland